Chapter 5

Section 5.2 - Antiderivatives

"You must unlearn what you have learned."

Antiderivative

A function $F(x)$ is an antiderivative of $f(x)$ if

$$
F^{\prime}(x)=f(x)
$$

Examples: Find $F(x)$ given the functions $f(x)$ below:

$$
\begin{array}{ll}
f(x)=x^{2} \Rightarrow F(x)=\frac{1}{3} x^{3}+C & \text { EACu Hnswer come } \\
f(x)=3 x^{5} \Rightarrow F(x)=\frac{1}{2} x^{6}+C & \text { HANE ACOSNTNT } \\
f(x)=\cos x \Rightarrow F(x)=\sin x+C &
\end{array}
$$

Learning Objectives

1. Given a function, be able to find the antiderivative.
2. Certain antiderivatives must be memorized - make sure you do so (I smell a pop quiz.)
3. Given a function, rewrite into a form such that finding an antiderivative is possible.
4. Make sure you understand the new notation associated with integration.

Integration:

Differentiation

$$
\begin{array}{ll}
\frac{d}{d x}(x)=1 & \int 1 d x=x+C \\
\frac{d}{d x}\left(\frac{1}{n+1} x^{n+1}\right)=x^{n} & \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \begin{array}{c}
\text { Power } \\
\text { RuEE } \\
(n \neq-1) \\
\hline
\end{array} \\
\frac{d}{d x}(\sin x)=\cos x & \int \cos x d x=\sin x+C \\
\frac{d}{d x}(\cos x)=-\sin x & \int \sin x d x=-\cos x+C
\end{array}
$$

Differentiation
Integration

$$
\begin{array}{ll}
\frac{d}{d x}(\tan x)=\sec ^{2} x & \int \sec ^{2} x d x=\tan x+C \\
\frac{d}{d x}(\cot x)=-\csc ^{2} x & \int \csc ^{2} x d x=-\cot x+C \\
\frac{d}{d x}(\sec x)=\sec x \tan x & \int \sec x \tan x d x=\sec x+C \\
\frac{d}{d x}(\csc x)=-\csc x \cot x \quad \int \csc x \cot x d x=-\csc x+C
\end{array}
$$

Examples:

$$
\begin{array}{l|l}
\int\left(2 x^{7}-3 \sec ^{2} x\right) d x & \int\left(\frac{1}{x^{4}}+\sqrt[3]{x}\right) d x \\
2 \cdot \frac{1}{8} x^{8}-3 \tan x+C & \int x^{-4}+x^{1 / 3} d x \\
\frac{1}{4} x^{8}-3 \tan x+c & -\frac{1}{-3} x^{-3}-3 / 3
\end{array}
$$

Properties of Integrals

$$
\begin{aligned}
& \frac{d}{d x}\left[\int f(x) d x\right]=\quad f(x) \\
& \int(c f(x)) d x=c \int f(x) d x
\end{aligned}
$$

$$
\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x
$$

Examples:

$$
\begin{aligned}
& \int(x+2)(x+3) d x \\
& \int x^{2}+5 x+6 d x \\
& \frac{1}{3} x^{3}+\frac{5}{2} x^{2}+6 x+C
\end{aligned}
$$

$\int\left(\frac{x+1}{x^{3}}\right) d x$
$\int \frac{x}{x^{3}}+\frac{1}{x^{3}} d x$
$\int x^{-2}+x^{-3} d x$
$-x^{-1}-\frac{1}{2} x^{-2}+C$

Learning Objectives

1. Given a function, be able to find the antiderivative.
2. Certain antiderivatives must be memorized - make sure you do so (I smell a pop quiz.)
3. Given a function, rewrite into a form such that finding an antiderivative is possible.
4. Make sure you understand the new notation associated with integration.

Homework/Classwork:

1. Classwork - Section5.2 WS
2. Homework - p. 256 \#1-29 odd, 45, 47
